Add like
Add dislike
Add to saved papers

Spontaneous activity is correlated with coding density in primary auditory cortex.

Sensory neurons across sensory modalities and specific processing areas have diverse levels of spontaneous firing rates (SFRs) in the absence of sensory stimuli. However, the functional significance of this spontaneous activity is not well-understood. Previous studies in the auditory system have demonstrated that different levels of spontaneous activity are correlated with a variety of physiological and anatomic properties, suggesting that neurons with differing SFRs make unique contributions to the encoding of auditory stimuli. Additionally, altered SFRs are a correlate of tinnitus, arising in several auditory areas after exposure to ototoxic substances and noise trauma. In this study, we recorded single-unit activity from primary auditory cortex of awake marmoset monkeys while delivering wide-band random-spectrum stimuli and white Gaussian noise (WGN) to examine any divergences in stimulus encoding properties across SFR classes. We found that higher levels of spontaneous activity were associated with both higher levels of activation relative to suppression across a variety of wide-band stimuli and higher driven rates in response to WGN. Moreover, response latencies to WGN were negatively correlated with the level of activation in response to both stimulus types. These findings are consistent with a novel view of the role spontaneous spiking may play during normal stimulus processing in primary auditory cortex and how it may malfunction in cases of tinnitus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app