JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
Add like
Add dislike
Add to saved papers

Acute hot water immersion is protective against impaired vascular function following forearm ischemia-reperfusion in young healthy humans.

Ischemia-reperfusion (I/R) injury is a primary cause of poor outcomes following ischemic cardiovascular events. We tested whether acute hot water immersion protects against forearm vascular I/R. Ten (5 male, 5 female) young (23 ± 2 yr), healthy subjects participated in two trials in random order 7-21 days apart, involving: 1) 60 min of seated rest (control), or 2) 60 min of immersion in 40.5°C water (peak rectal temperature: 38.9 ± 0.2°C). I/R was achieved 70 min following each intervention by inflating an upper arm cuff to 250 mmHg for 20 min followed by 20 min of reperfusion. Brachial artery flow-mediated dilation (FMD) and forearm postocclusive reactive hyperemia (RH) were measured as markers of macrovascular and microvascular function at three time points: 1) preintervention, 2) 60 min postintervention, and 3) post-I/R. Neither time control nor hot water immersion alone affected FMD (both, P > 0.99). I/R reduced FMD from 7.4 ± 0.7 to 5.4 ± 0.6% (P = 0.03), and this reduction was prevented following hot water immersion (7.0 ± 0.7 to 7.7 ± 1.0%; P > 0.99). I/R also impaired RH (peak vascular conductance: 2.6 ± 0.5 to 2.0 ± 0.4 ml·min-1 ·mmHg-1 , P = 0.003), resulting in a reduced shear stimulus (SRAUC ·10-3 : 22.5 ± 2.4 to 16.9 ± 2.4, P = 0.04). The post-I/R reduction in peak RH was prevented by hot water immersion (2.5 ± 0.4 to 2.3 ± 0.4 ml·min-1 ·mmHg-1 ; P = 0.33). We observed a decline in brachial artery dilator function post-I/R, which may be (partly) related to damage incurred downstream in the microvasculature, as indicated by impaired RH and shear stimulus. Hot water immersion was protective against reductions in FMD and RH post-I/R, suggesting heat stress induces vascular changes consistent with reducing I/R injury following ischemic events.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app