Add like
Add dislike
Add to saved papers

Glutathione-dependent micelles based on carboxymethyl chitosan for delivery of doxorubicin.

Novel glutathione (GSH)-dependent micelles based on carboxymethyl chitosan (CMCS) were developed for triggered intracellular release of doxorubicin (DOX). DOX-33'-Dithiobis (N-hydroxysuccinimidyl propionate)-CMCS (DOX-DSP-CMCS) prodrugs were synthesized. DOX was attached to the amino group on CMCS via disulfide bonds and drug-loaded micelles were formed by self-assembly. The micelles formed core-shell structure with CMCS and DOX as the shell and core, respectively, in aqueous media. The structure of the prodrugs was confirmed by IR and proton nuclear magnetic resonance ((1)H NMR) spectroscopy. The drug-loading capacity determined by UV spectrophotometry was 4.96% and the critical micelle concentration of polymer prodrugs determined by pyrene fluorescence was 0.089 mg/mL. Micelles were spherical and the mean size of the nanoparticles was 174 nm, with a narrow polydispersity index of 0.106. Moreover, in vitro drug release experiments showed that the micelles were highly GSH-sensitive owing to the reductively degradable disulfide bonds. Cell counting kit (CCK-8) assays revealed that DOX-DSP-CMCS micelles exhibited effective cytotoxicity against HeLa cells. Moreover, confocal laser scanning microscopy (CLSM) demonstrated that DOX-DSP-CMCS micelles could efficiently deliver and release DOX in the cancer cells. In conclusion, the DOX-DSP-CMCS nanosystem is a promising drug delivery vehicle for cancer therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app