Add like
Add dislike
Add to saved papers

N-tuple topological/geometric cutoffs for 3D N-linear algebraic molecular codifications: variability, linear independence and QSAR analysis.

Novel N-tuple topological/geometric cutoffs to consider specific inter-atomic relations in the QuBiLS-MIDAS framework are introduced in this manuscript. These molecular cutoffs permit the taking into account of relations between more than two atoms by using (dis-)similarity multi-metrics and the concepts related with topological and Euclidean-geometric distances. To this end, the kth two-, three- and four-tuple topological and geometric neighbourhood quotient (NQ) total (or local-fragment) spatial-(dis)similarity matrices are defined, to represent 3D information corresponding to the relations between two, three and four atoms of the molecular structures that satisfy certain cutoff criteria. First, an analysis of a diverse chemical space for the most common values of topological/Euclidean-geometric distances, bond/dihedral angles, triangle/quadrilateral perimeters, triangle area and volume was performed in order to determine the intervals to take into account in the cutoff procedures. A variability analysis based on Shannon's entropy reveals that better distribution patterns are attained with the descriptors based on the cutoffs proposed (QuBiLS-MIDAS NQ-MDs) with regard to the results obtained when all inter-atomic relations are considered (QuBiLS-MIDAS KA-MDs - 'Keep All'). A principal component analysis shows that the novel molecular cutoffs codify chemical information captured by the respective QuBiLS-MIDAS KA-MDs, as well as information not captured by the latter. Lastly, a QSAR study to obtain deeper knowledge of the contribution of the proposed methods was carried out, using four molecular datasets (steroids (STER), angiotensin converting enzyme (ACE), thermolysin inhibitors (THER) and thrombin inhibitors (THR)) widely used as benchmarks in the evaluation of several methodologies. One to four variable QSAR models based on multiple linear regression were developed for each compound dataset following the original division into training and test sets. The results obtained reveal that the novel cutoff procedures yield superior performances relative to those of the QuBiLS-MIDAS KA-MDs in the prediction of the biological activities considered. From the results achieved, it can be suggested that the proposed N-tuple topological/geometric cutoffs constitute a relevant criteria for generating MDs codifying particular atomic relations, ultimately useful in enhancing the modelling capacity of the QuBiLS-MIDAS 3D-MDs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app