Add like
Add dislike
Add to saved papers

Antitumor effects of 4-methylumbelliferone, a hyaluronan synthesis inhibitor, on malignant peripheral nerve sheath tumor.

Hyaluronan (HA) has been shown to play important roles in the growth, invasion and metastasis of malignant tumors. Our previous study showing that high HA expression in malignant peripheral nerve sheath tumors (MPNST) is predictive of poor patient prognosis, prompted us to speculate that inhibition of HA synthesis in MPNST might suppress the tumorigenicity. The aim of our study was to investigate the antitumor effects of 4-methylumbelliferone (MU), an HA synthesis inhibitor, on human MPNST cells and tissues. The effects of MU on HA accumulation and tumorigenicity in MPNST cells were analyzed in the presence or absence of MU in an in vitro as well as in vivo xenograft model using human MPNST cell lines, sNF96.2 (primary recurrent) and sNF02.2 (metastatic). MU significantly inhibited cell proliferation, migration and invasion in both MPNST cell lines. HA binding protein (HABP) staining, particle exclusion assay and quantification of HA revealed that MU significantly decreased HA accumulation in the cytoplasms and pericellular matrices in both MPNST cell lines. The expression levels of HA synthase2 (HAS2) and HA synthase3 (HAS3) mRNA were downregulated after treatment with MU. MU induced apoptosis of sNF96.2 cells, but not sNF02.2 cells. MU administration significantly inhibited the tumor growth of sNF96.2 cells in the mouse xenograft model. To the best of our knowledge, our study demonstrates for the first time the antitumor effects of MU on human MPNST mediated by inhibition of HA synthesis. Our results suggest that MU may be a promising agent with novel antitumor mechanisms for MPNST.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app