JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A physiological characterization of the Cafeteria diet model of metabolic syndrome in the rat.

Physiology & Behavior 2016 December 2
Many promising findings from pre-clinical research have failed to translate to the clinic due to their inability to incorporate human disease co-morbidity. A variety of rodent diets and feeding durations are currently used in models of human metabolic syndrome, obesity and diabetes. One model, the Cafeteria (CAF) diet, makes use of grocery store-purchased food items that more closely approximate the human ultra-processed diet than commercial high-fat or high-sugar rodent diets. The present study describes the development of metabolic syndrome in rats fed a CAF diet as well as the recovery of metabolic syndrome following a healthy "lifestyle" change. In addition, we explored the effects of CAF diet on spatial learning and memory and on neuroinflammation. Three-week old male Sprague-Dawley rats were fed a CAF diet for three months that consisted of 16 highly palatable human food items along with standard chow and a 12% sucrose solution to mimic soda consumption. Thereafter, a sub-group of CAF diet rats was switched to a chow diet (SWT) for one month. Both CAF and SWT groups were compared to control rats maintained on a standard chow diet (SD). Prior to the diet switch, CAF and SWT animals developed features akin to metabolic syndrome. Both groups of rats displayed significant abdominal obesity with increased visceral adiposity, hyperinsulinemia, glucose intolerance and dyslipidemia with elevated serum triglyceride levels and reduced HDL cholesterol. Switching to a chow diet for one month completely reversed these features in SWT animals. Although acquisition of the Barnes maze was not affected by the CAF diet, these animals exhibited greater hippocampal neuroinflammation compared to both SD and SWT rats as assessed by Iba1 staining. These results demonstrate that the CAF diet is very effective in creating metabolic syndrome with hippocampal inflammation in rats over a relatively short time span. This model may be of great heuristic importance in determining potential reversibility of metabolic and cerebrovascular pathologies across the lifespan and as a co-morbid factor in other disease models such as stroke.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app