Add like
Add dislike
Add to saved papers

New poly(ester-amide) copolymers modified with polyether (PEAE) for anticancer drug encapsulation.

New poly(ester-amide) copolymers modified with polyethers were developed for carboplatin encapsulation. These new copolymers contain hydrophobic blocks made of tyrosine derivative and dimer fatty acid, and poly(ethylene glycol) (PEG) as hydrophilic blocks. Short-term hydrolytic degradation revealed high water absorption, slight increase of pH of simulated body fluid and change of sample shape, which indicated the erosive mechanism of polymers degradation. Poly(ester-amide)-PEG copolymers were used for microspheres preparation and carboplatin encapsulation. A double emulsification process was used to produce microspheres with an average diameter of 20-30 μm. It was found that the amount of drug released was controlled by the molecular mass of PEG used for microspheres preparation. Mathematical models were used to elucidate the release mechanism of the carboplatin from the microspheres. The results demonstrate that poly(ester-amide)-PEG copolymers may be used for targeted carboplatin encapsulation and release.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app