Add like
Add dislike
Add to saved papers

Novel Composite PEM with Long-Range Ionic Nanochannels Induced by Carbon Nanotube/Graphene Oxide Nanoribbon Composites.

In the current study, carbon nanotube/graphene oxide nanoribbon (CNT/GONR) composites were obtained via a chemical "unzipping" method. Then novel CNT/GONR Nafion composite proton exchange membranes (PEMs) were prepared via a blending method. The CNT/GONR nanocomposites induce the adjustment of (-SO3 - )n ionic clusters in Nafion matrix to construct long-range ionic nanochannels and keep the activity of ionic clusters at the same time. This dramatically promotes the proton transport of the CNT/GONR Nafion composite PEMs at low humidity and high temperature. The proton conductivity of the composite PEM with 0.5 wt % CNT/GONR is as high as 0.18 S·cm-1 at 120 °C and 40%RH, nine times of recast Nafion (0.02 S·cm-1 ) at the same conditions. The 1D/2D nanostructure of CNT/GONR nanocomposite also contributes to restrain the methanol permeability of CNT/GONR Nafion. The composite PEM shows a one-order-of-magnitude decrease (2.84 × 10-09 cm2 ·s-1 ) in methanol permeability at 40 °C. Therefore, incorporation of this 1D/2D nanocomposite into Nafion PEM is a feasible pathway to conquer the trade-off effect between proton conductivity and methanol resistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app