Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Subthalamic nucleus stimulation effects on single and combined task performance in Parkinson's disease patients: a PET study.

Subthalamic nucleus deep brain stimulation (STN-DBS) represents one of the most efficacious treatments for Parkinson's disease, along with L-dopa therapy. The objective of the present work was to identify the cerebral networks associated with hand movement and speech production tasks performed alone and simultaneously, as well as the effects of STN-DBS on these profiles. Clinical, behavioral, and neuroimaging (oxygen 15-labeled water and Positron Emission Tomography) investigations were used to study single and combined performances of unilateral hand movements and speech production in 11 unmedicated individuals with PD, both off and on STN-DBS. Specifically, a flexible factorial design with the tasks (hand movement, speech production, combined task) and the STN-DBS conditions (off, on) as main factors was chosen for brain activation statistical analysis, using a Family-Wise Error corrected p-value at the cluster level of at least 10 contiguous voxels. Increased activation of fronto-parietal and cingulate areas was observed under STN-DBS for hand movement in single and combined tasks, respectively, reflecting a partial restoration of cortico-sub-cortical connections. The lack of results for speech production for both off and on STN-DBS could illustrate its relatively poor response to the treatment. STN-DBS tended to restore the additive function capacity that can be achieved when performing the combined task. We confirmed with original neuroimaging data that speech is much less responsive to STN-DBS than any other motor function and we concluded that speech outcomes following STN-DBS can be different from those observed pre-operatively following L-dopa administration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app