Add like
Add dislike
Add to saved papers

MicroRNA-27b exerts an oncogenic function by targeting Fbxw7 in human hepatocellular carcinoma.

Aberrant expression of microRNAs (miRNAs) plays fundamental effect on the pathogenesis of hepatocellular carcinoma (HCC). MiR-27b was previously found to play important roles in human cancers. However, its expression status, clinical significance, and biological functions in HCC remain largely unclear. The expression status of miR-27b in HCC specimens and cells were determined with qRT-PCR. MTT, 5-bromodeoxyuridine (BrdU) proliferation assays, and flow cytometry analysis were carried out to assay proliferation, cell cycle, and apoptosis. A subcutaneous model was used to evaluated the HCC tumor growth in vivo. The putative target gene of miR-27b was disclosed by TargetScan and a luciferase reporter assay. The levels of miR-27b were overexpressed in HCC. Overexpression of miR-27b was correlated with adverse prognostic features and reduced survival rate. Inhibition of miR-27b in SMMC-7721 cells remarkably suppressed proliferative ability and cell-cycle progression while enhanced apoptosis. In contrast, miR-27b overexpression resulted in prominent increased proliferation and process of cell cycle and reduced apoptosis of Hep3B cells. In vivo studies showed that knockdown of miR-27b inhibited the in vivo growth of SMMC-7721 cells in mouse xenograft model. Furthermore, we confirmed that Fbxw7 was directly regulated by miR-27b and mediated the roles of miR-27b in HCC. We suggest that miR-27b serves as an oncogenic miRNA in HCC by modulating proliferation, cell-cycle progression, and apoptosis, and its oncogenic effect is mediated by its downstream target gene, Fbxw7.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app