Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Thoracic spine morphology of a pseudo-biped animal model (kangaroo) and comparisons with human and quadruped animals.

PURPOSE: Based on the structural anatomy, loading condition and range of motion (ROM), no quadruped animal has been shown to accurately mimic the structure and biomechanical function of the human spine. The objective of this study is to quantify the thoracic vertebrae geometry of the kangaroo, and compare with adult human, pig, sheep, and deer.

METHODS: The thoracic vertebrae (T1-T12) from whole body CT scans of ten juvenile kangaroos (ages 11-14 months) were digitally reconstructed and geometric dimensions of the vertebral bodies, endplates, pedicles, spinal canal, processes, facets and intervertebral discs were recorded. Similar data available in the literature on the adult human, pig, sheep, and deer were compared to the kangaroo. A non-parametric trend analysis was performed.

RESULTS: Thoracic vertebral dimensions of the juvenile kangaroo were found to be generally smaller than those of the adult human and quadruped animals. The most significant (p < 0.001) correlations (Rho) found between the human and kangaroo were in vertebrae and endplate dimensions (0.951 ≤ Rho ≤ 0.963), pedicles (0.851 ≤ Rho ≤ 0.951), and inter-facet heights (0.891 ≤ Rho ≤ 0.967). The deer displayed the least similar trends across vertebral levels.

CONCLUSIONS: Similarities in thoracic spine vertebral geometry, particularly of the vertebrae, pedicles and facets may render the kangaroo a more clinically relevant human surrogate for testing spinal implants. The pseudo-biped kangaroo may also be a more suitable model for the human thoracic spine for simulating spine deformities, based on previously published similarities in biomechanical loading, posture and ROM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app