Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Pioglitazone Ameliorates Smooth Muscle Cell Proliferation in Cuff-Induced Neointimal Formation by Both Adiponectin-Dependent and -Independent Pathways.

Scientific Reports 2016 October 6
The aim of this study is to elucidate to what degree adiponectin is involved in TZD-mediated amelioration of neointimal formation. We investigated the effect of 3- or 8-weeks' pioglitazone on cuff-induced neointimal formation in adiponectin-deficient (APN-KO) and wild-type (WT) mice. Pioglitazone for 3 weeks reduced neointimal formation in the WT mice with upregulation of the plasma adiponectin levels, but failed to reduce neointimal formation in the APN-KO mice, suggesting that pioglitazone suppressed neointimal formation by adiponectin-dependent mechanisms. Pioglitazone for 3 weeks suppressed vascular smooth muscle cell (VSMC) proliferation and increased AdipoR2 expression in the WT mice. In vitro, globular adiponectin activated AMPK through both AdipoR1 and AdipoR2, resulting in the inhibition of VSMC proliferation. Interestingly, 8-weeks' pioglitazone was reduced neointimal formation in APN-KO mice to degree similar to that seen in the WT mice, suggesting that pioglitazone can also suppress neointimal formation via a mechanism independent of adiponectin. Pioglitazone for 8 weeks completely abrogated the increased VSMC proliferation, along with a reduction of cyclin B1 and cyclin D1 expressions and cardiovascular risk profile in the APN-KO mice. In vitro, pioglitazone suppressed these expressions, leading to inhibition of VSMC proliferation. Pioglitazone suppresses neointimal formation via both adiponectin-dependent and adiponectin-independent mechanisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app