Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

4-Аminopyridine sequesters intracellular Ca 2+ which triggers exocytosis in excitable and non-excitable cells.

Scientific Reports 2016 October 6
4-aminopyridine is commonly used to stimulate neurotransmitter release resulting from sustained plasma membrane depolarization and Ca2+ -influx from the extracellular space. This paper elucidated unconventional mechanism of 4-aminopyridine-stimulated glutamate release from neurons and non-neuronal cells which proceeds in the absence of external Ca2+ . In brain nerve terminals, primary neurons and platelets 4-aminopyridine induced the exocytotic release of glutamate that was independent of external Ca2+ and was triggered by the sequestration of Ca2+ from intracellular stores. The initial level of 4-aminopyridine-stimulated glutamate release from neurons in the absence or presence of external Ca2+ was subequal and the difference was predominantly associated with subsequent tonic release of glutamate in Ca2+ -supplemented medium. The increase in [Ca2+ ]i and the secretion of glutamate stimulated by 4-aminopyridine in Ca2+ -free conditions have resulted from Ca2+ efflux from endoplasmic reticulum and were abolished by intracellular free Ca2+ chelator BAPTA. This suggests that Ca2+ sequestration plays a profound role in the 4-aminopyridine-mediated stimulation of excitable and non-excitable cells. 4-Aminopyridine combines the properties of depolarizing agent with the ability to sequester intracellular Ca2+ . The study unmasks additional mechanism of action of 4-aminopyridine, an active substance of drugs for treatment of multiple sclerosis and conditions related to reduced Ca2+ efflux from intracellular stores.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app