Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Caspase-1 deficiency promotes high-fat diet-induced adipose tissue inflammation and the development of obesity.

Caspase-1 is a cysteine protease responsible for the processing of the proinflammatory cytokine interleukin-1β and activated by the formation of inflammasome complexes. Although several investigations have found a link between diet-induced obesity and caspase-1, the relationship remains controversial. Here, we found that mice deficient in caspase-1 were susceptible to high-fat diet-induced obesity with increased adiposity as well as normal lipid and glucose metabolism. Caspase-1 deficiency clearly promoted the infiltration of inflammatory macrophages and increased the production of C-C motif chemokine ligand 2 (CCL2) in the adipose tissue. The dominant cellular source of CCL2 was stromal vascular fraction rather than adipocytes in the adipose tissue. These findings demonstrate a critical role of caspase-1 in macrophage-driven inflammation in the adipose tissue and the development of obesity. These data provide novel insights into the mechanisms underlying inflammation in the pathophysiology of obesity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app