Add like
Add dislike
Add to saved papers

Nicotine stabilization in composite sodium alginate based wafers and films for nicotine replacement therapy.

Carbohydrate Polymers 2017 January 3
Composite wafers and films comprising HPMC and sodium alginate (SA) were formulated for nicotine (NIC) replacement therapy via the buccal route. Magnesium aluminium silicate (MAS) was added in different concentration ratios (0.25, 0.5, 0.75) to stabilize NIC and its effect on mechanical properties, internal and surface morphology, physical form, thermal properties, swelling, mucoadhesion, drug content and release behaviour of the formulations was investigated. MAS changed the physico-mechanical properties of the composite formulations causing a decrease in mechanical hardness, collapsed wafer pores, increased roughness of film surface, increase in crystallinity and decreased mucoadhesion of the wafers. However, MAS increased swelling in both films and wafers as well as interaction between NIC and SA, which increased drug-loading capacity. Further, MAS resulted in rapid and slow release of NIC from wafers and films respectively. The results suggest that the ideal formulation for the stabilization of NIC in the composite formulations was MAS 0.25.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app