Add like
Add dislike
Add to saved papers

A silicone fiber coating as approach for the reduction of fibroblast growth on implant electrodes.

In cochlear implant (CI) patients, an increase in electrode impedance due to fibrotic encapsulation is frequently observed. Several attempts have been proposed to reduce fibroblast growth at the electrode contacts, but none proved to be satisfactory so far. Here, a silicone fiber coating of the electrode contacts is presented that provides a complex micro-scale surface topography and increases hydrophobicity to inhibit fibroblast growth and adhesion. A silicone fiber electrospinning process was developed to create a thin and porous fiber mesh. Fiber coatings were applied on graphite specimen holders, glass cover slips and CI electrode contacts. For characterization of the coating's pore distribution, water contact angle and electrical impedance were analyzed. Cytotoxicity and in vitro fibroblast growth were evaluated to assess biological efficacy of the coatings. It could be shown that the silicone fiber mesh itself had only minor influence on electrode impedance. A uniform, hydrophobic fiber coating could be achieved that decreased fibroblast growth without showing toxic effects. Finally, CI electrode contacts were successfully coated in order to present this promising approach for a long-term improvement of CI electrodes. We are one of the first groups that could successfully adapt the electrospinning technique on the utilization of silicone. Silicone was chosen because of its high hydrophobicity, chemical stability and excellent biocompatibility and as it is one of the biomaterials already used in CIs. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2574-2580, 2017.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app