JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

DIXDC1 promotes tumor proliferation and cell adhesion mediated drug resistance (CAM-DR) via enhancing p-Akt in Non-Hodgkin's lymphomas.

Leukemia Research 2016 November
DIX domain containing 1 (DIXDC1), is a human homolog of Ccd1, a DIX domain containing protein in zebrafish. The present study was undertaken to determine the expression and biologic function of DIXDC1 in Non-Hodgkin's lymphoma (NHL). Clinically, we detected that the expression of DIXDC1 was significantly lower in the indolent lymphomas compared with the progressive lymphomas by immunohistochemistry analysis. Functionally, we found that DIXDC1 could promote cell proliferation via modulating cell cycle progression and PI3K/AKT signaling pathway in NHLs. Moreover, we confirmed that DIXDC1 was involved in the process of lymphoma cell adhesion mediated drug resistance (CAM-DR). Adhesion to fibronectin (FN) or HS-5 up-regulated DIXDC1 expression, and up-regulation of DIXDC1 resulted in an increased expression of p-AKT, which promoted CAM-DR. Our finding supports the role of DIXDC1 in cell proliferation, cell cycle and CAM-DR in NHLs. We propose that inhibition of DIXDC1 expression may be a novel therapeutic approach for NHLs patients, and it may be a target for drug resistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app