JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

FOXO3a Expression Regulated by ERK Signaling is Inversely Correlated With Y-Box Binding Protein-1 Expression in Prostate Cancer.

Prostate 2017 Februrary
BACKGROUND: FOXO3a is a member of the forkhead O transcription factors. FOXO3a induces the factors that contribute to cell cycle arrest and is considered a tumor suppressor in several malignant tumors. Y-box binding protein-1 (YB-1) is a multifunctional protein whose high expression is correlated with poor prognoses in various malignant tumors. In the current study, we investigated the relationship between FOXO3a and YB-1 to validate their functional roles in prostate cancer.

METHODS: Western blotting and cytotoxicity assays were conducted in prostate cancer cells, LNCaP, and 22Rv1 cells. We also evaluated the protein expressions of FOXO3a and YB-1 in human prostate cancer tissues, using radical prostatectomy specimens. Then, we investigated the correlations between protein expressions and clinicopathologic parameters.

RESULTS: We found that both FOXO3a and YB-1 proteins were phosphorylated by ERK signaling, resulting in FOXO3a inactivation and YB-1 activation in LNCaP and 22Rv1 cells. Inversely, inhibition of MEK or treatment with metformin activated FOXO3a through inactivation of ERK signaling and suppressed the viability of LNCaP and 22Rv1 cells in a dose-dependent manner. In immunohistochemical analysis, FOXO3a nuclear expression was inversely correlated with YB-1 nuclear expression (P < 0.0001). Furthermore, high FOXO3a nuclear expression was inversely correlated with a higher Gleason grade (P < 0.0001) and higher preoperative PSA (P = 0.0437).

CONCLUSIONS: These results showed that in prostate cancer, FOXO3a, and YB-1 play inverse reciprocal roles as a tumor-suppressor gene and oncogene, respectively, through their master regulator ERK. Prostate 77:145-153, 2017. © 2016 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app