Add like
Add dislike
Add to saved papers

Increased soluble and membrane-bound PD-L1 contributes to immune regulation and disease progression in patients with tuberculous pleural effusion.

Soluble and membrane-bound programmed death ligand-1 (sPD-L1 and mPD-L1, respectively) have been demonstrated to participate in the immune suppression of non-small cell lung cancer. However, the contribution of sPD-L1 and mPD-L1 to immune regulation and disease progression in patients with pleural effusions remains unknown. The present study evaluated the levels of sPD-L1 and membrane-bound PD-1/PD-L1 in the peripheral blood and pleural effusions of patients with tuberculous pleural effusion (TPE), malignant pleural effusion (MPE) and non-tuberculous non-malignant pleural effusion (n-TB n-M). Furthermore, selected T lymphocytes and cluster of differentiation (CD)14(+) monocytes were co-cultured to investigate the potential effect of the PD-1/PD-L1 pathway in TPE. Levels of sPD-L1 and PD-L1 on CD14(+) monocytes were increased in the TPE group, as compared with the MPE and n-TB n-M groups. Furthermore, sPD-L1 levels and the expression levels of PD-L1 on CD14(+) monocytes were demonstrated to be positively correlated with interferon (IFN)-γ concentration in pleural effusions. Therefore, IFN-γ may increase the expression of PD-L1 on CD14(+) monocytes in vitro. Cell counting kit-8 analysis demonstrated that anti-PD-L1 antibody was able to partially reverse the proliferation of T lymphocytes in the co-culture system. The results of the present study indicated that sPD-L1 or mPD-L1 are associated with the immune regulation and disease progression of TPE, and may serve as possible biomarkers of TPE. Furthermore, sPD-L1 and the PD-1/PD-L1 pathway of TPE may be associated with the Th1 immune response; therefore, an anti-PD-1/PD-L1 pathway suggests a potential immune therapy strategy for the treatment of TPE.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app