COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Agonistic Autoantibodies to the Angiotensin II Type 1 Receptor Enhance Angiotensin II-Induced Renal Vascular Sensitivity and Reduce Renal Function During Pregnancy.

Hypertension 2016 November
Preeclamptic women produce agonistic autoantibodies to the angiotensin II type 1 receptor (AT1-AA) and exhibit increased blood pressure (mean arterial pressure), vascular sensitivity to angiotensin II (ANG II), and display a decrease in renal function. The objective of this study was to examine the renal hemodynamic changes during pregnancy in the presence of AT1-AAs with or without a slow pressor dose of ANG II. In this study, mean arterial pressure was elevated in all pregnant rats treated with ANG II with or without AT1-AA. Glomerular filtration rate was reduced from 1.90±0.16 mL/min in normal pregnant (NP) to 1.20±0.08 in ANG II+AT1-AA rats. Renal blood flow was decreased in ANG II+AT1-AA versus NP rats to 7.4±1.09 versus 15.4±1.75 mL/min. Renal vascular resistance was drastically increased between ANG II+AT1-AA versus NP rats (18.4±2.91 versus 6.4±0.77 mm Hg/mL per minute). Isoprostane excretion was increased by 3.5-fold in ANG II+AT1-AA versus NP (1160±321 versus 323±52 pg/mL). In conclusion, ANG II and AT1-AA together significantly decrease glomerular filtration rate by 37% and renal blood flow by 50% and caused a 3-fold increase in renal vascular resistance and isoprostane levels versus NP rats. These data indicate the importance of AT1-AAs to enhance ANG II-induced renal vasoconstriction and reduce renal function as mechanisms to cause hypertension as observed during preeclampsia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app