Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Changes in the DNA methylation pattern of the host male gametophyte of viroid-infected cucumber plants.

Eukaryotic organisms exposed to adverse conditions are required to show a certain degree of transcriptional plasticity in order to cope successfully with stress. Epigenetic regulation of the genome is a key regulatory mechanism allowing dynamic changes of the transcriptional status of the plant in response to stress. The Hop stunt viroid (HSVd) induces the demethylation of ribosomal RNA (rRNA) in cucumber (Cucumis sativus) leaves, leading to increasing transcription rates of rRNA. In addition to the clear alterations observed in vegetative tissues, HSVd infection is also associated with drastic changes in gametophyte development. To examine the basis of viroid-induced alterations in reproductive tissues, we analysed the cellular and molecular consequences of HSVd infection in the male gametophyte of cucumber plants. Our results indicate that in the pollen grain, accumulation of HSVd RNA induces a decondensation of the generative nucleus that correlates with a dynamic demethylation of repetitive regions in the cucumber genome that include rRNA genes and transposable elements (TEs). We therefore propose that HSVd infection impairs the epigenetic control of rRNA genes and TEs in gametic cells of cucumber, a phenomenon thus far unknown to occur in this reproductive tissue as a consequence of pathogen infection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app