Add like
Add dislike
Add to saved papers

Effects of beta-tricalcium phosphate particles on primary cultured murine dendritic cells and macrophages.

Beta-tricalcium phosphate (β-TCP) is widely used for bone substitution in clinical practice. Particles of calcium phosphate ceramics including β-TCP act as an inflammation mediators, which is an unfavorable characteristic for a bone substituent or a prosthetic coating material. It is thought that the stimulatory effect of β-TCP on the immune system could be utilized as an immunomodulator. Here, in vitro effects of β-TCP on primary cultured murine dendritic cells (DCs) and macrophages were investigated. β-TCP particles enhanced expression of costimulatory surface molecules, including CD86, CD80, and CD40 in DCs, CD86 in macrophages, and MHC class II and class I molecules in DCs. DEC205 and CCR7 were up-regulated in β-TCP-treated DCs. Production of cytokines and chemokines, including CCL2, CCL3, CXCL2, and M-CSF, significantly increased in DCs; CCL2, CCL3, CCL4, CCL5, CXCL2, and IL-11ra were up-regulated in macrophages. The results of the functional assays revealed that β-TCP caused a prominent reduction in antigen uptake by DCs, and that conditioned medium from DCs treated with β-TCP facilitated the migration of splenocytes in the transwell migration assay. Thus, β-TCP induced phenotypical and functional maturation/activation of DCs and macrophages; these stimulating effects may contribute to the observed in vivo effect where β-TCP induced extensive migration of immune cells. When compared to lipopolysaccharide (LPS), an authentic TLR ligand, the stimulatory effect of β-TCP on the immune systems is mild to moderate; however, it may have some advantages as a novel immunomodulator. This is the first report on the direct in vitro effects of β-TCP against bone marrow-derived DCs and macrophages.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app