Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Suppressing Pitx2 inhibits proliferation and promotes differentiation of iHepSCs.

Induced hepatic stem cells (iHepSCs) have great potential as donors for liver cell therapy due to their abilities for self-renewal and bi-potential differentiation. However, the molecular mechanism regulating proliferation and differentiation of iHepSCs is poorly understood. In this study, we provide evidence that the homeodomain transcription factor, Pitx2, is essential to maintain iHepSCs stem cell characteristics. Suppressing Pitx2 expression in iHepSCs by lentivirus mediated specific shRNA markedly reduced the expression of the hepatic stem cell-associated genes (Lgr5, EpCAM, and Sox9) with concomitant inhibition of proliferation by blocking the G1/S phase transition, and these phenotypic changes were reversed upon re-expression of Pitx2. Pitx2 knockdown also resulted in up-regulation of the p53-induced Cdk inhibitor p21, and down-regulation of its downstream effector CDK2-Cyclin E kinase complex. Furthermore, we observed that iHepSCs were more efficiently induced to differentiate into both hepatocytes and cholangiocytes when Pitx2 expression was suppressed, as compared to unmanipulated iHepSCs. These findings reveal that Pitx2 expression may be leveraged to control the status of iHepSCs during expansion in vitro to provide a strategy for further application of iHepSCs in liver cell therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app