JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The functional analysis of distinct tospovirus movement proteins (NS M ) reveals different capabilities in tubule formation, cell-to-cell and systemic virus movement among the tospovirus species.

Virus Research 2017 January 3
The lack of infectious tospovirus clones to address reverse genetic experiments has compromised the functional analysis of viral proteins. In the present study we have performed a functional analysis of the movement proteins (NSM ) of four tospovirus species Bean necrotic mosaic virus (BeNMV), Chrysanthemum stem necrosis virus (CSNV), Tomato chlorotic spot virus (TCSV) and Tomato spotted wilt virus (TSWV), which differ biologically and molecularly, by using the Alfalfa mosaic virus (AMV) model system. All NSM proteins were competent to: i) support the cell-to-cell and systemic transport of AMV, ii) generate tubular structures on infected protoplast and iii) transport only virus particles. However, the NSM of BeNMV (one of the most phylogenetically distant species) was very inefficient to support the systemic transport. Deletion assays revealed that the C-terminal region of the BeNMV NSM , but not that of the CSNV, TCSV and TSWV NSM proteins, was dispensable for cell-to-cell transport, and that all the non-functional C-terminal NSM mutants were unable to generate tubular structures. Bimolecular fluorescence complementation analysis revealed that the C-terminus of the BeNMV NSM was not required for the interaction with the cognate nucleocapsid protein, showing a different protein organization when compared with other movement proteins of the '30K family'. Overall, our results revealed clearly differences in functional aspects among movement proteins from divergent tospovirus species that have a distinct biological behavior.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app