Add like
Add dislike
Add to saved papers

Evaluation of an in vitro screening model to assess phosgene inhalation injury.

Therapeutic development against exposure to toxic gases is hindered by the lack of appropriate models to evaluate candidate compounds prior to animal efficacy studies. In this study, an in vitro, air-liquid interface exposure model has been tested to examine its potential application for screening treatments for phosgene (carbonyl chloride)-induced pulmonary injury. Epithelial cultures on Transwell® inserts, combined with a Vitrocell® exposure apparatus, provided a physiologically relevant exposure environment. Differentiated human bronchial epithelial (16HBE) cultures were exposed for 8 min to phosgene ranging from 0 to 64 ppm and assessed for changes in transepithelial electrical resistance (TEER, epithelial barrier integrity), cellular viability (XTT) and post-exposure (PE) cellular metabolic energy status. Exposure to phosgene concentrations ≥8 ppm caused dose-dependent and significant decreases in TEER and XTT which did not recover within 24-h PE. In addition, at 64 ppm the rate of oxidative glutamine metabolism was significantly inhibited at 6 and 24 h after exposure. Glycolytic activities (glucose utilization and lactate production) were also inhibited, but to a lesser extent. Decreased glycolytic function can translate to insufficient energy sources to counteract barrier function failure. Consistent and sensitive markers of phosgene exposure were TEER, cell viability and decreased metabolism. As such, we have assessed an appropriate in vitro model of phosgene inhalation that produced quantifiable alterations in markers of lung cell metabolism and injury in human airway epithelial cells. Data indicate the suitability of this model for testing classes of anti-edemagenic compounds such as corticosteroids or phosphodiesterase inhibitors for evaluating phosgene therapeutics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app