Add like
Add dislike
Add to saved papers

Control of the Chemoselectivity of Metal N-Aryl Nitrene Reactivity: C-H Bond Amination versus Electrocyclization.

A mechanism study to identify the elements that control the chemoselectivity of metal-catalyzed N-atom transfer reactions of styryl azides is presented. Our studies show that the proclivity of the metal N-aryl nitrene to participate in sp(3)-C-H bond amination or electrocyclization reactions can be controlled by either the substrate or the catalyst. Electrocyclization is favored for mono-β-substituted and sterically noncongested styryl azides, whereas sp(3)-C-H bond amination through an H-atom abstraction-radical recombination mechanism is preferred when a tertiary allylic reaction center is present. Even when a weakened allylic C-H bond is present, our data suggest that the indole is still formed through an electrocyclization instead of a common allyl radical intermediate. The site selectivity of metal N-aryl nitrenes was found to be controlled by the choice of catalyst: Ir(I)-alkene complexes trigger electrocyclization processes while Fe(III) porphyrin complexes catalyze sp(3)-C-H bond amination in substrates where Rh2(II) carboxylate catalysts provide both products.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app