Add like
Add dislike
Add to saved papers

Role of FEN1 S187 phosphorylation in counteracting oxygen-induced stress and regulating postnatal heart development.

Flap endonuclease 1 (FEN1) phosphorylation is proposed to regulate the action of FEN1 in DNA repair as well as Okazaki fragment maturation. However, the biologic significance of FEN1 phosphorylation in response to DNA damage remains unknown. Here, we report an in vivo role for FEN1 phosphorylation, using a mouse line carrying S187A FEN1, which abolishes FEN1 phosphorylation. Although S187A mouse embryonic fibroblast cells showed normal proliferation under low oxygen levels (2%), the mutant cells accumulated oxidative DNA damage, activated DNA damage checkpoints, and showed G1-phase arrest at atmospheric oxygen levels (21%). This suggests an essential role for FEN1 phosphorylation in repairing oxygen-induced DNA damage and maintaining proper cell cycle progression. Consistently, the mutant cardiomyocytes showed G1-phase arrest due to activation of the p53-mediated DNA damage response at the neonatal stage, which reduces the proliferation potential of the cardiomyocytes and impairs heart development. Nearly 50% of newborns with the S187A mutant died in the first week due to failure to undergo the peroxisome proliferator-activated receptor signaling-dependent switch from glycolysis to fatty acid oxidation. The adult mutant mice developed dilated hearts and showed significantly shorter life spans. Altogether, our results reveal an important role of FEN1 phosphorylation to counteract oxygen-induced stress in the heart during the fetal-to-neonatal transition.-Zhou, L., Dai, H., Wu, J., Zhou, M., Yuan, H., Du, J., Yang, L., Wu, X., Xu, H., Hua, Y., Xu, J., Zheng, L., Shen, B. Role of FEN1 S187 phosphorylation in counteracting oxygen-induced stress and regulating postnatal heart development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app