Add like
Add dislike
Add to saved papers

Of mice and men: correlations between microRNA-17∼92 cluster expression and promoter methylation in severe bronchopulmonary dysplasia.

We previously demonstrated that decreased miR-17∼92 cluster expression was 1) present in lungs from human infants who died with bronchopulmonary dysplasia (BPD); 2) inversely correlated with DNA methyltransferase (DNMT) expression and promoter methylation; and 3) correlated with a subsequent diagnosis of BPD at 36 wk gestational age. We tested the hypothesis that plasma miR-17 levels would be lowest in infants who ultimately develop severe BPD. Secondly, we utilized our well-characterized murine model of severe BPD that combines perinatal inflammation with postnatal hyperoxia to test the hypothesis that alterations in lung miR-17∼92, DNMT, and promoter methylation in our model would mirror our findings in tissues from premature human infants. Plasma was obtained during the first 5 days of life from premature infants born ≤32 wk gestation. Lung tissues were harvested from mice exposed to maternal inflammation and neonatal hyperoxia for 14 days after birth. miR-17∼92 cluster expression and DNA methyltransferase expression were measured by qRT-PCR, and promoter methylation was assessed by Methyl-Profiler assay. Plasma miR-17 levels are significantly lower in the first week of life in human infants who develop severe BPD compared with mild or moderate BPD. Data from our severe BPD murine model reveal that lung miR-17∼92 cluster expression is significantly attenuated, and levels inversely correlated with DNMT expression and miR-17∼92 cluster promoter methylation. Collectively, our data support a plausible role for epigenetically altered miR-17∼92 cluster in the pathogenesis of severe BPD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app