Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Fabrication of scanning thermal microscope probe with ultra-thin oxide tip and demonstration of its enhanced performance.

Ultramicroscopy 2016 December
With the vigorous development of new nanodevices and nanomaterials, improvements in the quantitation and resolution of the measurement of nanoscale energy transport/conversion phenomena have become increasingly important. Although several new advanced methods for scanning thermal microscopy (SThM) have been developed to meet these needs, such methods require a drastic enhancement of SThM probe performance. In this study, by taking advantage of the characteristics of micromechanical structures where their mechanical stability is maintained even when the film that composes the structures becomes extremely thin, we develop a new design of SThM probe whose tip is made of ultra-thin SiO2 film (~100nm), fabricate the SThM probes, and demonstrate experimentally that the tip radius, thermal time constant, and thermal sensitivity of the probe are all improved. We expect the development of new high-performance SThM probes, along with the advanced measurement methods, to allow the measurement of temperature and thermal properties with higher spatial resolution and quantitative accuracy, ultimately making essential contributions to diverse areas of science and engineering related to the nanoscale energy transport/conversion phenomena.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app