Add like
Add dislike
Add to saved papers

Prussian blue analogue derived magnetic carbon/cobalt/iron nanocomposite as an efficient and recyclable catalyst for activation of peroxymonosulfate.

Chemosphere 2017 January
A Prussian blue analogue, cobalt hexacyanoferrate Co3[Fe(CN)6]2, was used for the first time to prepare a magnetic carbon/cobalt/iron (MCCI) nanocomposite via one-step carbonization of Co3[Fe(CN)6]2. The resulting MCCI consisted of evenly-distributed cobalt and cobalt ferrite in a porous carbonaceous matrix, making it an attractive magnetic heterogeneous catalyst for activating peroxymonosulfate (PMS). As Rhodamine B (RhB) degradation was adopted as a model test for evaluating activation capability of MCCI, factors influencing RhB degradation were thoroughly examined, including MCCI and PMS dosages, temperature, pH, salt and radical scavengers. A higher MCCI dosage noticeably facilitated the degradation kinetics, whereas insufficient PMS dosage led to ineffective degradation. RhB degradation by MCCI-activated PMS was much more favorable at high temperatures and under neutral conditions. The presence of high concentration of salt slightly interfered with RhB degradation by MCCI-activated PMS. Through examining effects of radical scavengers, RhB degradation by MCCI-activated PMS can be primarily attributed to sulfate radicals instead of a combination of sulfate and hydroxyl radicals. Compared to Co3O4, a typical catalyst for PMS activation, MCCI also exhibited a higher catalytic activity for activating PMS. In addition, MCCI was proven as a durable and recyclable catalyst for activating PMS over multiple cycles without efficiency loss and significant changes of chemical characteristics. These features demonstrate that MCCI, simply prepared from a one-step carbonization of Co3[Fe(CN)6]2 is a promising heterogeneous catalyst for activating PMS to degrade organic pollutants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app