JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Fibroblast growth factor 2 alters the oxytocin receptor in a developmental model of anxiety-like behavior in male rat pups.

Hormones and Behavior 2016 November
We aimed to determine the short-term effects of early-life stress in the form of maternal separation (MS) on anxiety-like behavior in male rat pups. In order to assess anxiety, we measured 40kHz separation-induced ultrasonic vocalizations (USV) on postnatal day (PND) 11. We further aimed to evaluate the potential involvement of two neurochemical systems known to regulate social and anxiety-like behaviors throughout life: oxytocin (OT) and fibroblast growth factor 2 (FGF2). For these purposes, we tested the effects of neonatal administration (on PND1) of an acute dose of FGF2 on USV and its potential interaction with MS. In addition, we validated the anxiolytic effects of OT and measured oxytocin receptor (OTR) gene expression, binding and epigenetic regulation via histone acetylation. Our results show that MS potentiated USV while acute administration of OT and FGF2 attenuated them. Further, we found that both FGF2 and MS increased OTR gene expression and the association of acH3K14 with the OTR promoter in the bed nucleus of the stria terminalis (BNST). Comparable changes, though not as pronounced, were also found for the central amygdala (CeA). Our findings suggest that FGF2 may exert its anxiolytic effects in male MS rats by a compensatory increase in the acetylation of the OTR promoter to overcome reduced OT levels in the BNST.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app