Add like
Add dislike
Add to saved papers

Oligo-clonal nanobodies as an innovative targeting agent for cancer therapy: New biology and novel targeting systems.

Variable heavy chain of HcAb (VHH), the smallest intact antibody fragment, possesses sub-nanomolar affinity to antigens. In spite of conventional antibodies, these fragments recognize concave and linear epitopes. VHHs are one the best weapon for targeted drug delivery in nanomedicine and biopharmaceutics. HER2 is overexpressed in 20-25% of breast and ovarian cancers. For many reasons, HER2 is a prominent target for drug delivery to breast tumor. In this study, we designed a robust prokaryotic expression system to express functional VHHs against HER2 receptor. This system showed high recombinant yields besides purified VHHs flow cytometry verified great capabilities of these molecules to pinpoint ecto-domain of HER2 receptor in MC4L2 HER2+ while insignificant non-specific binding to MC4L2 HER2-confirm nanobodies trivial cross-reaction. In the next step, we evaluated cooperative effect of four distinctive VHHs (oligoclonal VHHs) targeting different epitopes on HER2. As our result proved, using oligoclonal nanobodies as targeting moiety enhance targeting efficacy in comparison with monoclonal VHH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app