Add like
Add dislike
Add to saved papers

Benzyl isothiocyanate promotes apoptosis of oral cancer cells via an acute redox stress-mediated DNA damage response.

Benzyl isothiocyanate (BITC) is a cruciferous vegetable-derived compound with anticancer properties in human cancer cells. However, its anticancer potential and underlying mechanisms remain absent in human oral cancer cells. Results indicate that BITC inhibits growth, promotes G2/M phase arrest and triggers apoptosis of OC2 cells with a minimal toxicity to normal cells. BITC-induced cell death was completely prevented by pretreatment with thiol-containing redox compounds including N-acetyl-l-cysteine (NAC), glutathione (GSH), dithiothreitol, and 2-mercaptoethanol, but not free radical scavengers mito-TEMPO, catalase, apocynin, l-NAME and mannitol. BITC rapidly produced reactive oxygen species and nitric oxide, triggered oxidative DNA damage. BITC effectively decreased the intracellular GSH and GSH/GSSG ratio and redox balance recovery by thiol-containing redox compounds, but not by free radical scavengers. Accordingly, redox stresses-DNA damage response (DDR) activated ATM, Chk2, p53, and p21 and subsequently resulted in G2/M phase arrest by inhibiting Cdc2 and cyclin B1. Notably, BITC-induced apoptosis was associated with reduced Mcl-1 and Bcl-2 expression, diminished mitochondrial membrane potential (ΔΨm), and increased PARP cleavage. These BITC-induced redox stress-mediated DDR and apoptosis could be blocked by NAC and GSH. Therefore, BITC can be a rational drug candidate for oral cancer and acted via a redox-dependent pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app