Add like
Add dislike
Add to saved papers

Combinatorial deletions of glgC and phaCE enhance ethanol production in Synechocystis sp. PCC 6803.

Journal of Biotechnology 2016 December 11
Synechocystis sp. PCC 6803 is an attractive host for bio-ethanol production. In the present study, a nitrogen starvation approach was applied on an ethanol producing strain for inhibiting the growth, since ethanol production competes with the cell growth. The effect of gene deletions in the glycogen and polyhydroxybutyrate (PHB) synthesis pathways was investigated. Measurements of intracellular glycogen and PHB revealed that the glycogen was accumulated under the nitrogen starvation condition and the gene deletion of glycogen synthesis pathway caused the accumulation of PHB. The ethanol producing strain harboring deletions for both the glycogen and the PHB synthesis pathways (ΔglgCΔphaCE/EtOH) produced ethanol at the specific rate of 240mgg (dry cell weight)(-1) day(-1) under the nitrogen starvation condition. In a high cell density culture (OD730=50) using this ΔglgCΔphaCE/EtOH strain, the ethanol production rates were 1.08 and 2.01gL(-1) day(-1) under light conditions of 40 and 80μmolm(-2)s(-1), respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app