Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Targeted methylation sequencing reveals dysregulated Wnt signaling in Parkinson disease.

Parkinson disease (PD) is a progressive neurodegenerative movement disorder. Both environmental and genetic factors play important roles in PD etiology. A number of environmental toxins cause parkinsonism in human and animal models. Genetic studies of rare early onset familial PD cases resulted in identification of disease-linked mutations in multiple genes. Nevertheless, the potential interaction between environment and genetics in PD pathogenesis remains largely unknown. We hypothesized that environmental factors induce abnormal epigenetic regulation that is involved in the pathogenesis of both familial and sporadic PD. We determined the global methylation status of 80,000-110,000 CpG sites in each of the five sporadic PD patient brains and five age and postmodern interval matched control brains utilizing bisulfite padlock sequencing. Multiple genes involved in neurogenesis, particularly the ones in the Wnt signaling pathway, were hypermethylated in PD brains compared to their matched control brains. Consistent with the DNA methylation changes, marked reduction of protein expression was observed for four Wnt and neurogenesis related genes (FOXC1, NEURG2, SPRY1, and CTNNB1) in midbrain dopaminergic (DA) neurons of PD. The treatment of low concentration of 1-methyl-4-phenylpyridinium (MPP+ ) for cells resulted in downregulation of Wnt related genes. The study revealed an important link between the epigenetic disregulation of Wnt signaling and the pathogenesis and progression of PD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app