Add like
Add dislike
Add to saved papers

Acetylcholine-induced ex vivo ATP release from the human nasal mucosa.

OBJECTIVE: The present study aimed at investigating ATP release in response to acetylcholine (Ach) and pharmacologically elucidating the intracellular signal transduction pathway of this reaction in an ex vivo experiment.

METHODS: The inferior turbinate mucosa was collected from 21 patients with chronic hypertrophic rhinitis who underwent endoscopic turbinectomy. The mucosa was shaped into a filmy round piece, and incubated with chemical(s) in Hank's balanced salt solution for 10min. After incubation, the ATP concentration was measured by a luciferin-luciferase assay.

RESULTS: The baseline release of ATP without stimulus was 57.2±10.3fM. The ATP release was significantly increased by stimulation with 100μM Ach. The Ach-induced ATP release was completely inhibited by removing extracellular Ca2+ . Significant inhibition of the Ach-induced ATP release was also observed by the addition of 1μM atropine, 40μM 2-APB, 10μM CBX, and 100μM PPADS, whereas 30nM bafilomycin A1 did not affect the ATP release.

CONCLUSION: These results indicate that the Ach-induced ATP release from the human nasal mucosa is dependent on the pannexin-1 channel and purinergic P2X7 receptor, suggesting that these two molecules constitute a local autocrine/paracrine signaling system in the human nasal epithelium.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app