Add like
Add dislike
Add to saved papers

Novel Bivalent 99mTc-Complex with N-Methyl-Substituted Hydroxamamide as Probe for Imaging of Cerebral Amyloid Angiopathy.

Cerebral amyloid angiopathy (CAA) is characterized by the deposition of amyloid aggregates in the walls of the cerebral vasculature. Recently, the development of molecular imaging probes targeting CAA has been attracting much attention. We previously reported the 99mTc-hydroxamamide (99mTc-Ham) complex with a bivalent benzothiazole scaffold as a binding moiety for amyloid aggregates ([99mTc]BT2) and its utility for CAA-specific imaging. However, the simultaneous generation of two radiolabeled complexes derived from the geometric isomers was observed in the 99mTc-labeling reaction. It was recently reported that the complexation reaction of 99Tc with N-methyl-substituted Ham provided a single 99Tc-Ham complex consisting of two N-methylated Ham ligands with marked stability. In this article, we designed and synthesized a novel N-methylated bivalent 99mTc-Ham complex ([99mTc]MBT2) and evaluated its utility for CAA-specific imaging. N-Methyl substitution of [99mTc]BT2 prevented the generation of its isomer in the 99mTc-labeling reaction. Enhanced in vitro stability of [99mTc]MBT2 as compared with [99mTc]BT2 was observed. [99mTc]MBT2 showed very low brain uptake, which is favorable for CAA-specific imaging. An in vitro inhibition assay using β-amyloid aggregates and in vitro autoradiographic examination of brain sections from a Tg2576 mouse and a CAA patient showed a decline in the binding affinity for amyloid aggregates due to N-methylation of the 99mTc-Ham complex. These results suggest that the scaffold of the 99mTc-Ham complex may play important roles in the in vitro stability and the binding affinity for amyloid aggregates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app