Add like
Add dislike
Add to saved papers

Recombinant exochitinase of the thermophilic mould Myceliopthora thermophila BJA: Characteristics and utility in generating N-acetyl glucosamine and in biocontrol of phytopathogenic fungi.

Chitinase from the thermophilic mould Myceliopthora thermophila BJA (MtChit) is an acid tolerant, thermostable and organic solvent stable biocatalyst which does not require any metal ions for its activity. To produce high enzyme titres, reduce fermentation time and overcome the need for induction, this enzyme has been heterologously expressed under GAP promoter in the GRAS yeast, Pichia pastoris. The production medium supplemented with the permeabilizing agent Tween-20 supported two-fold higher rMtChit production (5.5 × 103 U L-1 ). The consensus sequences S(132)xG(133)G(134) and D(168)xxD(171)xD(173)xE(175) in the enzyme have been found to represent the substrate binding and catalytic sites, respectively. The rMtChit, purified to homogeneity by a two-step purification strategy, is a monomeric glycoprotein of ∼48 kDa, which is optimally active at 55°C and pH 5.0. The enzyme is thermostable with t1/2 values of 113 and 48 min at 65 and 75°C, respectively. Kinetic parameters Km , Vmax , kcat , and kcat /Km of the enzyme are 4.655 mg mL-1 , 34.246 nmol mg-1  s-1 , 3.425 × 106 min-1 , and 1.36 × 10-6 mg mL-1  min-1 , respectively. rMtChit is an unique exochitinase, since its action on chitin liberates N-acetylglucosamine NAG. The enzyme inhibits the growth of phytopathogenic fungi like Fusarium oxysporum and Curvularia lunata, therefore, this finds application as biofungicide at high temperatures during summer in tropics. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:70-80, 2017.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app