Add like
Add dislike
Add to saved papers

Enhancement of Energy Storage and Photoresponse Properties of Folic Acid-Polyaniline Hybrid Hydrogel by in Situ Growth of Ag Nanoparticles.

Electrically conductive hydrogels are a fascinating class of materials that exhibit multifarious applications such as photoresponse, energy storage, etc., and the three-dimensional micro- and nanofibrillar structures of the gels are the key to those applications. Herein, we have synthesized a hybrid hydrogel based on folic acid (F) and polyaniline (PANI) in which F acts as a supramolecular cross-linker of PANI chains. The gels are mechanically robust and are characterized by field-emission scanning electron microscopy, transmission electron microscopy, and spectroscopic, rheological, and universal testing measurements. The hybrid xerogel exhibit a BET surface area 238 m(2) g-(1), conductivity of 0.04 S/cm, specific capacitance of 295 F/g at a current density of 1A/g, and photocurrent of ∼2 mA under white-light illumination. Silver nanoparticles (AgNPs) are in situ grown to elegantly improve the conductivity, energy storage, and photoresponse capability of the gels. The formation of AgNPs drastically improves the specific capacitances up to 646 F/g (at current density 1A/g), excellent rate capability (403 F/g at 20 A/g), and stable cycling performance with a retention ratio of 74% after 5000 cycles. The AgNPs embedded gel exhibits dramatic enhancement of photocurrent to 56 mA, and its time-dependent photoillumination corroborates faster rise and decay of current compared to those of folic acid-polyaniline hydrogel.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app