Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Characterization of Glutamine Deamidation by Long-Length Electrostatic Repulsion-Hydrophilic Interaction Chromatography-Tandem Mass Spectrometry (LERLIC-MS/MS) in Shotgun Proteomics.

Analytical Chemistry 2016 November 2
Deamidation of glutamine (Gln) residues is a spontaneous or enzymatic process with significant implications in aging and human pathology. Although some methods are available to identify the γ/α-glutamyl products of deamidation, none of these methods allows the characterization of this post-translational modification (PTM) from complex biological samples by shotgun proteomics. Here we present LERLIC-MS/MS, a chromatographic strategy that uses a long (50 cm) anion-exchange capillary column operating in the electrostatic repulsion-hydrophilic interaction mode (ERLIC) and coupled directly to tandem mass spectrometry (MS/MS) for proteome analysis in a single injection. Profiling of soluble extracts of brain tissues by LERLIC-MS/MS distinguished for the first time γ/α-glutamyl isomers of deamidation, encountering a 1.7 γ/α-glutamyl ratio for most Gln deamidation products. A detailed analysis of any deviation from that observed ratio allowed the identification of transglutaminase-mediated γ-glutamyl isomers as intermediate products of transamidation. Furthermore, LERLIC-MS/MS was able to simultaneously separate Gln and asparagine (Asn) deamidation products even for those peptides showing multiple deamidated proteoforms. The characterization of Asn deamidated residues by LERLIC-MS/MS also uncovered novel PIMT (protein L-isoaspartyl methyltransferase) substrate proteins in human brain tissues that deviated from the expected 3:1 isoAsp/Asp ratio. Taken together, our results demonstrate that LERLIC-MS/MS can be used to perform an in-depth study of protein deamidation on a global proteome scale. This new strategy should help to elucidate the biological implications of deamidation in aging and disease conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app