Add like
Add dislike
Add to saved papers

Master Equation Analysis of Thermal and Nonthermal Microwave Effects.

Master equation is a successful model to describe the conventional heating reaction, it is expanded to capture the "microwave effect" in this work. The work equation of "microwave effect" included master equation presents the direct heating, indirect heating, and nonthermal effect about the microwave field. The modified master equation provides a clear physics picture to the nonthermal microwave effect: (1) The absorption and the emission of the microwave, which is dominated by the transition dipole moment between two corresponding states and the intensity of the microwave field, provides a new path to change the reaction rate constants. (2) In the strong microwave field, the distribution of internal states of the molecules will deviate from the equilibrium distribution, and the system temperature defined in the conventional heating reaction is no longer available. According to the general form of "microwave effect" included master equation, a two states model for unimolecular dissociation is proposed and is used to discuss the microwave nonthermal effect particularly. The average rate constants can be increased up to 2400 times for some given cases without the temperature changed in the two states model. Additionally, the simulation of a model system was executed using our State Specified Master Equation package. Three important conclusions can be obtained in present work: (1) A reasonable definition of the nonthermal microwave effect is given in the work equation of "microwave effect" included master equation. (2) Nonthermal microwave effect possibly exists theoretically. (3) The reaction rate constants perhaps can be changed obviously by the microwave field for the non-RRKM and the mode-specified reactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app