Add like
Add dislike
Add to saved papers

Igf Binding Proteins Protect Undifferentiated Spermatogonia in the Zebrafish Testis Against Excessive Differentiation.

Endocrinology 2016 November
IGF binding proteins (IGFBPs) modulate the availability of IGFs for their cognate receptors. In zebrafish testes, IGF3 promotes the proliferation and differentiation of type A undifferentiated (Aund) spermatogonia, and igf3 expression is strongly elevated by FSH but also responds to T3. Here we report the effects of FSH and T3 on igfbp transcript levels in adult zebrafish testis. We then examined T3 and FSH effects on zebrafish spermatogenesis and explored the relevance of IGFBPs in modulating these T3 or FSH effects, using a primary tissue culture system for adult zebrafish testis. T3 up-regulated igfbp1a and igfbp3 expression, whereas FSH reduced igfbp1a transcript levels. To quantify effects on spermatogenesis, we determined the mitotic index and relative section areas occupied by Aund, type A differentiating, or type B spermatogonia. In general, T3 and FSH stimulated spermatogonial proliferation and increased the areas occupied by spermatogonia, suggesting that both self-renewal and differentiating divisions were stimulated. Preventing IGF/IGFBP interaction by NBI-31772 further increased T3- or FSH-induced spermatogonial proliferation. However, under these conditions the more differentiated type A differentiating and B spermatogonia occupied larger surface areas at the expense of the area held by Aund spermatogonia. Clearly decreased nanos2 transcript levels are in agreement with this finding, and reduced amh expression may have facilitated spermatogonial differentiation. We conclude that elevating IGF3 bioactivity by blocking IGFBPs shifted T3- or FSH-induced signaling from stimulating spermatogonial self-renewal as well as differentiation toward predominantly stimulating spermatogonial differentiation, which leads to a depletion of type Aund spermatogonia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app