Add like
Add dislike
Add to saved papers

Structure and function of anhydride-modified forms of human insulin: In silico, in vitro and in vivo studies.

Insulin is a therapeutic protein whose amyloid formation is reported in diabetic patients. Four anhydride compounds were used in the current study in order to experiment their potential reducing effect on insulin propensity to form amyloid fibrils. The modified forms (obtained with succinic-, 3,3-dimethylglutaric, 2-phenylglutaric-, and (2-Dodecen-1-yl) succinic anhydride), were first characterized with regard to melting temperature (Tm), changes in secondary structure percentage and hydrophobic surface. Fibril formation was then assessed by Congo red absorbance kinetics and transmission electron microscopy. Functionality was investigated with the use of an insulin tolerance test in NMRI mice. Finally, 10ns molecular dynamics simulations were performed during which structural changes, potential energy, gyration radius, RMSD, and accessible surface area were monitored. In all cases, α-helical structure content of the modified forms was reduced, but thermal stability and structural compactness of modified insulin were increased except in case of the dodecenylated species. All modified insulin forms undergo amorphous aggregation instead of amyloid fibrils formation, and dodecenylated insulin makes the largest amorphous aggregates. In silico results were overall in accordance with in vitro studies. Finally, only succinylated insulin was functional, although dimethylglutaric-modified insulin started to show some activity after 2h.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app