JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Lack of mitochondrial DNA impairs chemical hypoxia-induced autophagy in liver tumor cells through ROS-AMPK-ULK1 signaling dysregulation independently of HIF-1α.

Alterations in mitochondrial DNA (mtDNA) and autophagy activation are common events in tumors. Here we have investigated the effect of mitochondrial genome depletion on chemical hypoxia-induced autophagy in liver tumor cells. Human SK-Hep-1 wild-type and mtDNA-depleted (Rho) cells were exposed to the hypoxia mimetic agents CoCl2 and deferoxamine (DFO). Up-regulation of HIF-1α, but not HIF-2α was observed. The expression of several HIF-1α target genes was also found. In human SK-Hep-1 and mouse Hepa 1-6 liver tumor cells, but not in the counterpart Rho derived lines, chemical hypoxia increased the abundance of autophagosomes and autolysosomes. In wild-type and Rho cells, chemical hypoxia induced down-regulation of HIF-1α-dependent autophagy inhibitors Bcl-2 and mTOR, whereas activation of AMPK/ULK1-mediated pro-autophagy pathway occurred only in wild-type cells. Chemical (compound C) and genetic (shRNA) inhibition of AMPK activation resulted in reduced autophagy. ATP levels were similar in both cell types, whereas constitutive and chemical hypoxia-induced reactive oxygen species (ROS) generation was lower in Rho cells. In wild-type cells, the antioxidant N-acetylcysteine blocked CoCl2 - and DFO-induced AMPK and autophagy activation, but not endoplasmic reticulum stress induced by CoCl2 . Enhanced Bax-α/Bcl-2 ratio and cell death was induced by hypoxia mimetic agents more markedly in wild-type than in Rho cells. Upon blocking autophagy activation with 3-methyladenine, DFO-induced cell death was partially prevented whereas that induced by CoCl2 was increased, but only in wild-type cells. These results suggest that mitochondrial dysfunction associated with the lack of mtDNA impairs the signaling pathways mediated by ROS, controlling autophagy activation in liver tumor cells, which may contributes to cancer development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app