Add like
Add dislike
Add to saved papers

Mixed Micelles Loaded with Bile Salt: An Approach to Enhance Intestinal Transport of the BCS Class III Drug Cefotaxime in Rats.

BACKGROUND AND OBJECTIVES: Cefotaxime is a class III drug according to the Biopharmaceutical Classification System due to low intestinal permeability based on poor oral bioavailability. Bile salt compounds have been shown to be effective additive for drug permeation through several biological membranes. The main purpose of this study was to investigate the ability of a mixed micelles made of phosphatidylcholine, sodium deoxycholate, and loaded with a cefotaxime-3α,7α-dihydroxy-12-keto-5β-cholanate complex to enhance the oral bioavailability of cefotaxime in rats.

METHODS: Thin-film hydration method was used to prepare cefotaxime-loaded mixed micelles using different bile salt concentrations (0.87-25 mM of sodium deoxycholate). Overall, micelle sizes ranging from 86.9 to 155.6 nm were produced with negative zeta potential values from -15.9 to -19.5 mV and drug loading from 10.5 to 18.9 %. The oral bioavailability of cefotaxime in mixed micellar formulation was assessed and the pharmacokinetic parameters were compared with cefotaxime-3α,7α-dihydroxy-12-keto-5β-cholanate complex and cefotaxime aqueous solution. 24 Male Wistar rats were randomly allocated into four groups (n = 6, per group) to receive the following: (1) a single intravenous dose of cefotaxime (25 mg/kg) in sterilized normal saline solution for injection; (2) a single oral dose of mixed micelles (100 mg/kg of cefotaxime) in phosphate buffered saline administered by oral gavage; (3) a single oral dose of cefotaxime-3α,7α-dihydroxy-12-keto-5β-cholanate complex (100 mg/kg of cefotaxime) in phosphate buffered saline administered by oral gavage; (4) a single oral dose of free cefotaxime (100 mg/kg) in aqueous solution administered by oral gavage. Blood samples were collected for up to 24 h and cefotaxime analyzed using a validated HPLC assay.

RESULTS: Pharmacokinetic data showed that the oral bioavailability of cefotaxime in mixed micelles was found to be 4.91 % higher compared to the cefotaxime in aqueous solution (1.30 %). Maximum concentration (C max ) of cefotaxime in mixed micellar formulation was higher (1.08 ± 0.1 µg/ml) compared to the cefotaxime-3α,7α-dihydroxy-12-keto-5β-cholanate complex (0.69 ± 0.1 µg/ml) and cefotaxime in aqueous solution (0.52 ± 0.1 µg/ml). Similarly, the mean values for area under the plasma concentration-time curve extrapolated to infinity (AUC0-∞ ) of cefotaxime in the mixed micellar formulation was higher (3.89 ± 0.9 μg·h/mL) compared to the cefotaxime-3α,7α-dihydroxy-12-keto-5β-cholanate complex (1.52 ± 0.2 μg·h/mL) and cefotaxime in aqueous solution (1.03 ± 0.4 μg·h/mL), respectively.

CONCLUSION: The mixed micellar formulation was able to increase the oral bioavailability of the BCS Class III drug cefotaxime up to fourfold by enhancing drug permeation through the mucosal membrane of the small intestine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app