JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Anti-cancer Drug Delivery Using Metal Organic Frameworks (MOFs).

Cancer is the uncontrolled growth of cells in the body and is considered as one of the major causes of death globally. There are several cytotoxic chemotherapeutic agents used to treat cancer including methotrexate, 5-fluorouracil, cisplatin, tamoxifen, doxorubicin and others. Although billions of dollars have been spent on cancer research to develop these chemotherapies, it still remains a major illness for mankind partly due to the shortcomings of these therapies. These shortcomings include low targeting specificity, severe side effects (due to high doses) and poor pharmacokinetics. To avoid these drawbacks, anti-cancer drug delivery systems have been developed recently using nanocarriers including liposomes, micelles, polyelectrolyte capsules and others. One of the recent class of nanoparticles investigated for chemotherapeutic use are metal organic frameworks (MOFs) which are hybrid polymers that consist of metal ions or clusters and organic ligands. MOFs are used in many applications including gas/vapor separation, gas storage, catalysis, luminescent materials, and biomedical imaging. These structures have additional features that promote their use as drug carriers in the biomedical field. First, they are nontoxic, biodegradable and have the ability to carry high loadings of the anti-neoplastic agent due to their porous nature. Also, they have well-defined crystalline structures that can be characterized by different analytical techniques and their sizes are suitable to control their in vivo drug release. This paper reviews the methods used to synthesize MOFs and their recent use as antineoplastic drug delivery carriers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app