Add like
Add dislike
Add to saved papers

Functional assessment for elimination of mismatches in nuclear and whole cell extracts obtained from mouse and human blastocysts.

Preimplantation embryos may have an increased risk of having mismatches due to the rates of cell proliferation and DNA replication. Elimination of mismatches in human gametes and embryos has not been investigated. In this study we developed a sensitive functional assay to examine the repair or elimination of mismatches in both commercially available cell extracts and extracts obtained from preimplantation embryos. Heteroduplex molecules were constructed using synthetic oligonucleotides. Efficiency of the repair of mismatches was semi-quantitatively analysed by exposure to nuclear/whole cell extracts (as little as 2.5 µg) and extracts obtained from pooled mouse and human blastocysts to investigate the repair capacity in human embryos. A cell free in vitro assay was successfully developed to analyze the repair of mismatches using heteroduplex complexes. The assay was further optimized to analyze repair of mismatches in cell extracts obtained from oocytes and blastocysts using minute amounts of protein. The efficiency of mismatch repair was examined in both mouse and human blastocysts (2.5 µg). The blastocysts were observed to have a lower repair efficiency compared to commercially available nuclear and whole cell extracts. In conclusion, a sensitive, easy, and fast in vitro technique was developed to detect the repair of mismatch efficiency in embryos.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app