Add like
Add dislike
Add to saved papers

A new approach to selective brain cooling by a Ranque-Hilsch vortex tube.

BACKGROUND: Target temperature management is the single most effective intervention and the gold standard in post-resuscitation care today. However, cooling the whole body below 33-34 °C can cause severe complications. Therefore, developing a selective brain cooling (SBC) approach which can be initiated early to induce rapid cooling and maintain the target temperature over 12-24 h before slowly rewarming brain temperature by itself alone would be advantageous. Vortex tubes are simple mechanical devices generating cold air from a stream of compressed air without applied chemical or energy. This study investigated whether blowing cooled air from a vortex tube into the nasal cavities is safe and effective to selectively reduce and maintain before slowly rewarming brain temperature back to normal temperature.

METHODS: Experiments were conducted on ten juvenile pigs. Body temperature was measured using an esophageal and a rectal temperature probe while brain temperature with an intraparenchymal thermocouple probe. Cerebral blood flow (CBF) was measured with CT perfusion.

RESULTS: Brain temperature dropped below 34 °C within 30-40 min while a brain-esophageal temperature difference greater than 3 °C was maintained over 6 h. There was no evidence of nasal or nasopharynx mucosal swelling, necrosis, or hemorrhage on MRI examination. CBF first decreased and then stabilized together with brain temperature before increasing to the baseline level during rewarming.

CONCLUSIONS: SBC was accomplished by blowing cold air from a vortex tube into the nasal cavities. Due to its portability, the method can be used continuously in resuscitated patients in both in- and out-of-hospital situations without interruption.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app