Add like
Add dislike
Add to saved papers

Fabrication of non-dissolving analgesic suppositories using 3D printed moulds.

Conventional suppositories sometimes fail in exerting their therapeutic activity as the base materials melt inside body cavities. Also they are not suitable to provide long term treatment. Biomedical grade silicone elastomers may be used to fabricate non-dissolvable suppositories to overcome these disadvantages. We kneaded 4 analgesics into the 2 kinds of silicone polymers at 1%, 5% and 10% drug loading, respectively, to test their mechanical properties and drug release profiles. The optimized drug-polymer combinations were used to fabricate suppositories, and three dimensional printing (3DP) was used to create the suppository moulds. Subsequently, the drug release profiles and biocompatibility of the suppositories were studied. It was found that, the mechanical properties of the drug laden silicone elastomers and the rate of drug release from the elastomers can be tuned by varying drug-polymer combinations. The silicone elastomers containing 1% (w/w) and 5% (w/w) diclofenac sodium were the optimal formulations with prolonged drug release and biocompatibility at cellular level. These properties, together with complex geometries offered by 3DP technique, potentially made the non-dissolving suppositories promising therapeutic agents for personalized medicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app