Add like
Add dislike
Add to saved papers

Folic Acid-Metabolizing Enzymes Regulate the Antitumor Effect of 5-Fluoro-2'-Deoxyuridine in Colorectal Cancer Cell Lines.

In colorectal cancer chemotherapy, the current standard of care includes combination therapy with 5-fluorouracil (5-FU) and leucovorin (LV). However, the factors that determine the LV-mediated enhancement of 5-FU antitumor activity are not fully understood. Therefore, we investigated the roles of thymidine synthase (TYMS), folate receptor 1 (FOLR1), dihydrofolate reductase (DHFR), phosphoribosylglycinamide formyltransferase (GART), methylenetetrahydrofolate dehydrogenase (MTHFD1), and methylenetetrahydrofolate reductase (MTHFR) in LV-mediated enhancement of 5-fluoro-2'-deoxyuridine (FdUrd) cytotoxicity in vitro as a model of 5-FU antitumor activity. These genes were downregulated in DLD-1 and HCT116 human colorectal cancer cells by using small-interfering RNA. Reduced expression of TYMS mRNA significantly increased FdUrd cytotoxicity by 100- and 8.3-fold in DLD-1 and HCT116 cells, respectively. In contrast, reducing the expression of FOLR1, DHFR, GART, MTHFD1, and MTHFR decreased FdUrd cytotoxicity by 2.13- to 12.91-fold in DLD-1 cells and by 3.52- to 10.36-fold in HCT116 cells. These results demonstrate that folate metabolism is important for the efficacy of FdUrd. Overall, the results indicate that it is important to clarify the relationship between folate metabolism-related molecules and 5-FU treatment in order to improve predictions of the effectiveness of 5-FU and LV combination therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app